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Abstract

The extremum of the Willmore-like functional for m-dimensional Riemannian manifold im-
mersed in d-dimensional Riemannian manifold under normal variations is studied and various
cases of interest are examined. This study is used to relate the parameters of QCD string action,
including the Polyakov–Kleinert extrinsic curvature action, with the geometric properties of the
world sheet. The world sheet has been shown to have negative stiffness on the basis of the geomet-
ric considerations. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

QCD strings is a string theory in four dimensions. It has been realized by Polyakov [1,19]
and independently by Kleinert [2,20,21] that for QCD strings, added extrinsic curvature ac-
tion to the usual Nambu–Goto (NG) area term is appropriate. In particular the theory with
extrinsic curvature action alone has been shown to be asymptotically free [1–3,19–21] — a
feature relevant to describe QCD. By considering the 1-loop multi-instanton effects in the
theory of two-dimensional world sheet in R3 and R4, the grand partition function has been
found to be that of a two-dimensional modified Coulomb gas system with long range order in
the infra-red region and, in plasma phase in the ultra-violet region [4]. The above result uses
the running coupling constant and the string world sheet is stable against small fluctuations
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along the normal (transverse) directions in the infra-red region and avoids crumpling. Thus
the Polyakov–Kleinert string provides a relevant description of colour flux tubes between
quarks in QCD.

In order to remove the unphysical ghost poles and to realize a lowest energy state, Kleinert
and Chervyakov [5,22] recently proposed a new string model with negative sign for the ex-
trinsic curvature action, i.e., they hypothesize negative stiffness for the gluonic flux tubes, in-
spired by properties of magnetic flux tubes in Type-II superconductor and of Nielsen–Olesen
vortices in relativistic gauge models. They propose an effective string action as

S = c − 1

2
M2

∫
d2ξ

√
ggαβ∇αX

µ(ξ)
1

c − e∇2/µ2 ∇βX
µ(ξ),

where Xµ(ξ); µ = 1, 2, 3, 4 are the world sheet coordinates, ξ1, ξ2 are the local isothermal
coordinates on the surface, gαβ = ∂αX

µ∂βX
µ is the induced metric (first fundamental form)

on the world sheet, ∇α the covariant derivative on the surface, M the dimensionfull (mass
dimension) constant and c is a dimensionless constant. The propagator from the quadratic
part in Xµ in momentum space [5,22] is

G(k2) = 1

c − 1

c − e−k2/µ2

k2
,

and for small momentum, this is

G(k2) � 1 + k2/Λ2

k2

with Λ2 = (c − 1)/µ2. This has a single pole at k2 = 0 with negative stiffness α0 =
−Λ2/M2, in contrast to the propagator in Polyakov–Kleinert model 1/(k2(1 + k2)/Λ2),
which has unphysical pole at k2 = −Λ2 and which has positive stiffness of Λ2/M2. Ap-
proximating the full propagator by its low momentum expression, Kleinert and Chervyakov
[5,22] have proposed an action at low momentum region as

SKC = 1

2
M2

∫
d2ξ

√
ggαβ∇αX

µ 1

1 − (∇2/Λ2)
∇βX

µ. (1)

Such an action (1) has the the high temperature behaviour as that of large-N QCD [6]. The
negative extrinsic curvature term can be seen from (1) by expanding the non-local term
using the Gauss equation

∇α∇βX
µ = Hi

αβN
iµ, (2)

where i = 1, 2 and Hi
αβ are the components of the extrinsic curvature (second fundamental

form) along the two normals Niµ to the world sheet, and the Weingarten equation [4]

∇αN
iµ = −Hiγ

α ∂γX
µ, (3)

where the covariant derivative ∇α in (3) incorporates the connection in the normal frame as
well. By expanding (1 − (∇2/Λ2))−1 in (1) and realizing Xµ is a scalar on the world sheet,
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(1) can be written as

SKC = 1

2
M2

∫
d2ξ

√
g

{
2 + 1

Λ2
gαβ∂αX

µgγ δ∇γ (∇δ∂βX
µ) − · · ·

}
,

where we have retained up to the 1/Λ2 term for illustration. Upon using (2) and (3) and the
fact ∂αXµNiµ = 0, the above expression simplifies to

SKC = 1

2
M2

∫
d2ξ

√
g

{
2 − 1

Λ2
HiαβH i

αβ

}
.

But then,

HiαβH i
αβ = 4|H |2 + R,

where |H |2 = HiHi with Hi = 1
2g

αβH i
αβ and R the scalar curvature of the world sheet.

In view of this, the expression for SKC becomes

SKC � M2
∫ √

g d2ξ − 2M2

Λ2

∫ √
g|H |2 d2ξ − M2

Λ2

∫ √
gR d2ξ + · · · . (4)

In the above M2 plays the role of string tension. The extrinsic curvature action (the second
term in (4)) has negative stiffness. The third term is just the Euler characteristic of the
surface which is a topological invariant action. It is clear from (1) that unphysical poles can
be avoided by appealing to surfaces with negative stiffness.

It will be worthwhile to examine whether the negative stiffness is favoured from purely
geometric considerations of the surface. In this context, the Willmore surfaces which ex-
tremize the Willmore functional [7]

SW =
∫ √

g|H |2 d2ξ,

become relevant. It is the purpose of this paper to first consider general Willmore functional
for m-dimensional manifold immersed in d-dimensional Riemannian space (m < d) and
study various cases of interest. Then using the results, we compare the classical equation
of motion for (4) with immersion in flat space, with that of the Willmore functional for
immersion in a Riemannian space, thereby showing the effects of the NG term in (4) could
be accounted for by considerations of the Willmore functional in a curved space.

The extremum of Willmore functional for hypersurfaces in Euclidean space (E3) has
been dealt with in detail by Willmore [7] and Chen [8] for m-dimensional oriented closed
hypersurface in Euclidean spaceEm+1. Willmore and Jhaveri [9] extended tom-dimensional
manifold immersed as a hypersurface of a general (m+1)-dimensional Riemannian manifold
and Weiner [10] to that of two-dimensional surface in a general Riemannian manifold.
The geometric problem of the isometric immersion of a Riemannian manifold, (M, g), in
another Riemannian manifold, (M̃, g̃) was first considered by Pedit and Willmore [11], by
generalizing the definition of the Willmore functional and evaluating the Euler equation
for the extremum of this functional. We here revisit this problem, explicitly derive the
Euler equation under normal variations and then consider various cases of interest. As an
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application of this study, we will compare the equation of motion of Willmore functional
for two-dimensional surface immersed in d-dimensional space with the classical equation
of motion of QCD string to relate the QCD string parameters, namely, the string tension
and stiffness parameter to the geometrical properties of the surface.

2. Effects due to normal variations

For an m-dimensional manifold Σ immersed in a d-dimensional (d > m) Riemannian
manifold Σ ′ with metric hµν (µ, ν = 1, 2, . . . , d), we have the induced metric on Σ as

gαβ = ∂αX
µ∂βX

νhµν, (5)

where the indices α, β take values 1, 2, . . . , m and Xµ = Xµ(ξ1, ξ2, . . . , ξm) with ξα’s
as coordinates on Σ . There are (d − m) unit normals at a point P ∈ Σ , denoted by Niµ

(i = 1, 2, . . . , (d − m)), chosen to satisfy

NiµNjνhµν = δij, ∂αX
µNiνhµν = 0

∀i = 1, 2, . . . , (d − m), ∀α = 1, 2, . . . , m. (6)

Repeated indices will be appropriately summed over in this paper. The equation of Gauss
[12] for Σ ,

∇α∇βX
µ ≡ ∂α∂βX

µ − Γ
γ
αβ∂γX

µ + Γ̃ µ
νρ∂αX

ν∂βX
ρ = Hi

αβN
iµ, (7)

defines the second fundamental form Hi
αβ . Γ γ

αβ and Γ̃
µ
νρ are the connections on Σ and Σ ′

determined by gαβ and hµν , respectively. The (d −m) normals Niµ satisfy the Weingarten
equation

∇αN
iµ ≡ ∂αN

iµ + Γ̃ µ
σρ∂αX

σNiρ − Aij
αN

jµ = −Hiβ
α ∂βX

µ, (8)

where A
ij
α = Njν(∂αN

iµ + Γ̃
µ
σρ∂αX

σNiρ)hµν is the m-dimensional gauge field or connec-
tion in the normal bundle. We need the Gauss equation [12]

R̃µνρσ ∂αX
µ∂βX

ν∂γX
ρ∂δX

σ = Rαβγ δ + Hi
βγH

i
αδ − Hi

βδH
i
αγ , (9)

whereRαβγ δ and R̃µνρσ are the Riemann symbols of the first kind forΣ andΣ ′, respectively.
We introduce the mean curvature Hi (there are (d − m) such quantities) by

Hi = 1

m
gαβH i

αβ. (10)

The variations of the surface can be described by the variations of Xµ(ξ1, . . . , ξm) as
Xµ(ξ1, . . . , ξm) + δXµ(ξ1, . . . , ξm). In general δXµ = φiNiµ + ∂αX

µηα , comprising of
variations along m tangent directions and (d − m) normals. The tangential variations are
related to the structure equations [13]. So, we consider only the normal variations and
accordingly,

δXµ = φiNiµ. (11)
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Using (5) it follows for normal variations

δ
√
g = −m

√
gφiH i, δgαβ = 2φiH iαβ. (12)

From (10) it follows

δH i = 2

m
φkHkαβH i

αβ + 1

m
gαβδH i

αβ, (13)

using the second equation in (12). For hypersurfaces, there will be only one normal and
in such a case, the computation of δH has been given in Ref. [9]. The evaluation of δH i

αβ

for two-dimensional surface in d-dimensional Riemannian manifold is described in Ref.
[13]. The computation of δH i

αβ for m-dimensional surface in d-dimensional Riemannian
manifold is involved and we give here the relevant steps for the sake of completeness.

From (7), we have

Hi
αβ = {∂α∂βXµ + Γ̃ µ

ρσ ∂αX
ρ∂βX

σ }Niνhµν. (14)

Using (6), we have

δNjµNiνhµν + NjµδNiνhµν = −NjµNiνδhµν,

∂γ (δX
µ)Niνhµν + ∂γX

µδNiνhµν = −∂γX
µNiνδhµν,

and then,

gαβH iδH i
αβ = gαβH iR̃ρσνλ∂αX

ν∂βX
ρδXσNiλ + gαβH i(∇α∇βδX

µ)Ni
µ

+ 1
2 mHiH jNjµNiν(∂λhµν)δX

λ − mHiH j Γ̃
µ
ρλN

jσ δXλNi
µ. (15)

The last two terms cancel each other after expanding Γ̃
µ
ρλ and using i ↔ j symmetry. Now

using (8) and (11), we find

gαβH iδH i
αβ = gαβH iR̃ρσνλ∂αX

ν∂βX
ρφkNkσNiλ

+Hk(∇α∇αφk) − HiHi
αβH

kαβφk. (16)

We consider the extremum of the following functional:

W =
∫ √

g(H iH i)m/2 dmξ, (17)

which reduces to Willmore functional for m = 2 and to that of Chen [8] for m-dimensional
hypersurface as well with Willmore and Jhaveri [9] for m-dimensional hypersurface in
(m+1)-dimensional Riemannian manifold. The normal variations of (17) give the equations
of motion. Taking the normal variations of (17) and using (12), (13) and (16), we obtain

δW =
∫ √

g(HjHj )(m/2)−1Hk(∇α∇αφk) dmξ − m

∫ √
gφkHk(HjHj )m/2 dmξ

+
∫ √

g(HjHj )(m/2)−1φkH iH i
αβH

kαβ dmξ

+
∫ √

g(HjHj )(m/2)−1HigαβR̃ρσνλ∂αX
ν∂βX

ρφkNkσNiλ dmξ. (18)
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Equating this to zero and using∫ √
g(HjHj )(m/2)−1Hk(∇α∇αφk) dmξ

=
∫ √

gφk∇α∇α((HjHj )(m/2)−1Hk) dmξ, (19)

we obtain the equation of motion for (17) as

∇α∇α((HjHj )(m/2)−1Hk) − mHk(HjHj )m/2 + (HjHj )(m/2)−1HiHi
αβH

kαβ

+(HjHj )(m/2)−1HigαβR̃ρσνλ∂αX
ν∂βX

ρNkσNiλ = 0, (20)

since (18) must hold for all allowed φk .
We now consider various cases.

Case 1 (Hypersurface in Euclidean space). Let Σ be an m-dimensional hypersurface in
d = (m + 1)-dimensional Euclidean space, i.e., Σ ′ = Em+1. As there will be only one
normal for a hypersurface, HjHj = H 2 and (20) reduces to

∇α∇α(Hm−1) − mHm+1 + Hm−1HαβH
αβ = 0, (21)

and in this case the Gauss equation (9) when contracted with gαγ gβδ gives

HαβHαβ = −R + m2H 2,

where R is the curvature scalar of the hypersurface Σ . Then (21) becomes

∇α∇α(Hm−1) + m(m − 1)Hm+1 − Hm−1R = 0, (22)

which is the result of Chen [8] and agrees with Eq. (5.59) of Willmore [7].

Case 2 (Hypersurface in Riemannian space). Let Σ be an m-dimensional hypersurface
immersed in d = (m + 1)-dimensional Riemannian manifold Σ ′. Then Eq. (20) becomes

∇α∇αHm−1 − mHm+1 + Hm−1HαβH
αβ + Hm−1gαβR̃ρσνλ∂αX

ν∂βX
ρNσNλ = 0.

(23)

In this case, the equation of Gauss (9) is

Rαβγ δ = HβδHαγ − HβγHαδ + R̃µνρσ ∂αX
µ∂βX

ν∂γX
ρ∂δX

σ ,

which when contracted with gαγ gβδ gives

R = −HαβHαβ + m2H 2 + R̃µνρσ ∂αX
µ∂βX

ν∂γX
ρ∂δX

σgαγ gβδ. (24)

The completeness relation found in Ref. [13] will now be used and it is

hµν = gαβ∂αX
µ∂βX

ν +
d−2∑
i

NiµNiν. (25)
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For hypersurfaces, (25) is simply

hµν = gαβ∂αX
µ∂βX

ν + NµNν, (26)

and using this in (24), we find

HαβHαβ = −R + m2H 2 + R̃ − 2R̃µνN
µNν. (27)

Using (26) in the last term of (23), we have

gαβR̃ρσνλ∂αX
ν∂βX

ρNσNλ = R̃ρσνλh
ρνNσNλ − R̃ρσνλN

νNσNρNλ=R̃σλN
σNλ,

and so Eq. (23) becomes

∇α∇αHm−1 + m(m − 1)Hm+1 + Hm−1{−R + R̃ − R̃µνN
µNν} = 0. (28)

We analyse (28) by choosing an orthogonal frame at P ∈ Σ such that the matrix Hαβ is
diagonal. Then HαβHαβ = ∑m

i=1h
2
i , and m2H 2 = (

∑m
i=1hi)

2 (see [9]). Then, Eq. (28)
can be written as

∇α∇αHm−1 = −Hm−1




m∑
i=1

h2
i − 1

m

(
m∑
i=1

h

)2

+ R̃µνN
µNν


 , (29)

since (27) gives

−R + R̃ + m2H 2 − 2R̃µνN
µNν =

m∑
i=1

h2
i .

It is to be noted that
∑m

i=1h
2
i − (1/m)(

∑m
i=1hi)

2 ≥ 0. For R̃µν positive-definite, it is seen
from (29) that ∇α∇αHm−1 has the same sign as −Hm−1.

Case 3 (Two-dimensional surface in Riemannian space). Let Σ be a two-dimensional
surface immersed in Σ ′. Then (20) becomes

∇α∇αHk − 2Hk(HjHj ) + HiHi
αβH

kαβ + HigαβR̃ρσνλ∂αX
ν∂βX

ρNkσNiλ = 0,

(30)

agreeing with Eq. (35) of Ref. [13].

Case 4 (Immersions in space of constant curvature). Consider Σ ′ space to be a space of
constant curvature, i.e., de-Sitter or anti-de-Sitter-type. In this case [14]

R̃µνρσ = K(hµρhνσ − hµσhνρ). (31)

Then,

R̃νσ = hµρR̃µνρσ = K(d − 1)hνσ , R̃ = hµσ R̃µσ = Kd(d − 1). (32)
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Then (20) becomes

∇α∇α((HjHj )(m/2)−1Hk) +mHk(HjHj )(m/2)−1(K − H,H,)

+(HjHj )(m/2)−1HiHi
αβH

kαβ = 0. (33)

Similarly, Eq. (28) in Case 2 becomes

∇α∇αHm−1 + m(m − 1)Hm+1 − RHm−1 = 0 (34)

for m-dimensional hypersurface immersed in Σ ′ space of constant curvature.
Eq. (30) of Case 3, i.e., two-dimensional surface immersed in Σ ′, a space of constant

curvature, becomes

∇α∇αHk − 2Hk(HjHj ) + HiHiαβHk
αβ + 2KHk = 0. (35)

In spite of the simplifications, these equations are still difficult to solve explicitly without
further choices for the geometry.

3. QCD string and Willmore functional

As explained in Section 1, it appears that a candidate action for describing QCD string
has to involve the extrinsic geometry of the world sheet, regarded as a two-dimensional
Riemannian surface immersed in R4. With negative stiffness, Kleinert and Chervyakov
[5,22] successfully obtained the correct high temperature behaviour as in large-N QCD
[6]. Further evidence for the role of the extrinsic geometry in QCD stems from the U(N),
N → ∞, lattice gauge theory calculations of Kazakov [15], Kostov [16] and O’Brien
and Zuber [17]. These calculations confirm the equivalence of multicolour QCD and string
theory in which the resulting surfaces intersect at self-intersections. It is known that the
self-intersection number involves extrinsic geometry. We consider the action (4) without
the Euler characteristic term as

SKC = T

∫ √
g d2ξ + α0

∫ √
g|H |2 d2ξ, (36)

where T is the string tension, α0 a measure of stiffness of the QCD string immersed in Rd

(say) and H 2 = HiHi , i = 1, 2, . . . , (d − 2). The extremum of (36) can be easily found
using (12), (13) and (16) for normal variations. We find the equation of motion for (36) as

∇α∇αHk − 2T

α0
Hk − 2HkHjHj + HiHkαβH i

αβ = 0 (37)

for the stiffness parameter α0 �= 0. This non-linear equation is complicated and it will be
worthwhile hence to draw some information from this.

Kholodenko and Nesterenko [18] proposed an approach in this direction by considering
(36) for immersion in R3 and relating to the extremum of the Willmore functional for
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immersion in S3. We will generalize this approach here by relating (37) to (20) for m = 2,
which is (30). Eq. (30) has the same form as (37) provided we identify,

−2T

α0
Hk = HiR̃ρσνλ∂αX

ν∂βX
ρNkσNiλgαβ. (38)

Upon using (25), this becomes

−2T

α0
Hk = Hi(R̃σλN

kσNiλ − R̃ρσνλN
jνNjρNkσNiλ), (39)

a new relation among the string tension, stiffness parameter, mean curvature scalar and
the geometric properties of Σ ′. In order to make (39) manageable, we take Σ ′ a space of
constant curvature as in (31) and (32). Then it can be seen,

R̃σλN
kσNiλ = K(d − 1)δik, R̃ρσνλN

jνNjρNkσNiλ = K(d − 3)δik, (40)

and so (39) becomes

−2T

α0
Hk = K(d − 1)Hk − K(d − 3)Hk = 2KHk. (41)

Now as we have assumed that Hk’s are not zero, it follows:

T

α0
= −K. (42)

It is noted here that the dimensionality of Σ ′ does not directly appear in relating T , the
string tension, and α0, the stiffness parameter, with K . From this, it follows that the stiffness
parameter can be positive for K < 0 (anti-de-Sitter background) or negative for K > 0
(de-Sitter background).

4. Conclusions

The extremum of the Willmore functional for m-dimensional surface immersed in d-
dimensional Riemannian space is studied under the normal variations of the immersed
surface. Various cases of interest are examined. In particular, the equation of motion for a
two-dimensional surface immersed in spaces of constant curvature, is compared with the
equation of motion of the Polyakov–Kleinert action of the QCD string considered as a
Riemann surface immersed in R4, to obtain a new relation connecting the string tension and
stiffness parameter of the QCD string on the one hand and the constant K of the Riemann
space (31). This relation T/α0 = −K , is independent of the dimensionality of Σ ′. For
positive K , favoured by positive-definiteness of R̃µν (see Case 2) from (32), it follows that
negative stiffness is recommended by geometric considerations. This result agrees with the
observation of Kleinert and Chervyakov [5,22] using (physical) QCD string. Thus the QCD
string world sheet regarded as a two-dimensional surface immersed in R4 has been shown
to favour negative stiffness by comparing its classical equation with that of a Willmore
two-dimensional surface immersed in a space of constant curvature.
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